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1. Very brief introduction

These are some brief lecture notes corresponding to a small minicourse delivered
at the Student Colloquium and School on Mathematical Physics in Stará Lesná in
2024. They cover the basics of the BRST and BV formalism, which corresponds
to an efficient and widely applicable framework for quantisation of classical field
theories. To the largest part the exposition is based on the treatment in Weinberg’s
Quantum theory of fields (vol 2), so we refer the interested reader to this particular
source. I am also very grateful to Pavol Ševera for discussions and clarifications.

We will work in finite dimensional setups — this is solely in order to save time
(by avoiding writing integrals) and declutter the notation. Alternatively, one can
say that we use the De Witt notation.

2. BRST formalism

2.1. The task. Stories often start with a hero setting out for a difficult task. In
this story we are the heroes and our task is the following.

Suppose we have a compact and connected finite-dimensional Lie group G (think
of it as the infinite-dimensional group of gauge symmetries) acting on the manifold
Rn (a.k.a. the space of fields) and preserving the measure Dx = dx1 . . . dxn (the
path integral measure). We will denote the fundamental vector fields by ea. We
were entrusted with the mission of calculating the integral (path integral of a gauge
invariant theory with insertions of gauge-invariant operators)∫

Rn
ψ(x)eiS(x)Dx,

where both ψ and S are G-invariant functions on Rn.
Since we are (pretending to be) physicists, we want to calculate this quantity

using perturbation techniques. In order to do this, we need a non-degenerate critical
point of S (so that we can get the propagator by inverting the quadratic term in
S). However, this is not possible — the G-invariance of S implies that any critical
point is degenerate. What shall we do?

2.2. Faddeev–Popov trick. We note that this problem is related to the fact that
we are unnecessarily performing integrations along the orbits of the group action.
Since we want to regard the G-related points as gauge equivalent, it would suffice to
count each orbit only once, i.e. make the integration run over some “submanifold”
S ⊂ Rn which intersects each orbit once.1 Suppose we have such an S, given by the
vanishing of a set of functions fa(x) (gauge fixing conditions). Then we have2∫

Rn
ψeiSDx ∼

∫
Rn

DxψeiS
∏
a

δ(fa(x)) detA, Aab(x) := ea(fb).

1All notes related to BRST, Faddeev–Popov method, or gauge fixing procedures should mention
Gribov ambiguity — so we are mentioning it here.

2We will use ∼ to denote equality up to a nonzero constant multiple.
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To see the need for the determinant correction, note that for instance both δ(2f)
and δ(f) have the effect of restricting the integration to the vanishing locus of f
but they are not equal (in fact δ(2f) = 1

2δ(f)).
This looks bad! We have just obtained two relatively nasty extra factors in our

path integral! Why is this better? The trick is that we can actually represent both
of these ingredients as further integrals of convenient exponentials, thus effectively
modifying S. Explicitly, we can introduce new fermionic variables ca, ba (ghosts)
and new bosonic variables ha (Nakanishi–Lautrup fields) and write

(1)

∫
Rn
ψ(x)eiS(x)Dx ∼

∫
DxDbDcDhψ(x)ei(S(x)+baAab(x)cb+hafa(x)).

2.3. A variant. One can modify the argument slightly and instead of inserting
“
∏
a δ(fa(x)) detA” into the integral we can insert “

∏
a δ(fa(x) − νa) detA”, for

some numbers νa (after all, the argument should be independent of the precise
form of the gauge-fixing function). Or we can insert a linear combination∑

β

wβ
∏
a

δ(fa(x)− νβa ) detA,

as long as
∑
β wβ = 1. Or we can take a particular continuous linear combination,

a.k.a. integral, i.e. insert∫
Dν w(ν)

∏
a

δ(fa(x)− νa) detA = w(f(x)) detA,

with
∫
Dν w(ν) = 1. Since we like (or at least know what to do with) exponentials,

we will pick the weight function w to be Gaussian. We thus obtain∫
Rn
ψeiSDx ∼

∫
DxDbDc ψei(S(x)+baAab(x)cb+fa(x)fa(x)).

The moral of either method is that we now resolved our original problem by
replacing the theory by a larger one (with more fields) which however has a nonde-
generate critical point, and so we can now happily proceed with quantisation.

2.4. BRST symmetry. Returning back to (1) we see that our new action

(2) S′(x, b, c, h) = S(x) + bA(x)c+ hf(x)

is no longer gauge invariant. This is of course good, since we wanted to get rid of
the troublesome gauge invariance. However, as we will see in a moment there is a
new, so called BRST, symmetry emerging. It is given by the BRST (or sometimes
called Slavnov) operator (i.e. a vector field on our newly extended space of fields)

Q = caeia(x)∂xi − 1
2f

a
bcc

bcc∂ca − ha∂ba ,
where fabc are the structure constants of the Lie algebra g = Lie(G). Note that this
is an odd operator (when acting on a bosonic function it gives a fermionic answer,
and vice versa). It also has the amazing property

Q2 = 0.

Finally, if we assign a degree (ghost number) to our variables according to

deg xi = 0, deg ca = 1, deg ba = −1, deg ha = 0,

then we get that degS′ = degS = 0 and degQ = 1 (i.e. Q raises the degree by 1).
Let us now see why QS′ = 0. First, QS = ca(eaS) = 0 due to our original

G-invariance of S. The invariance of the remainder follows from the fact that

(3) baAab(x)cc + hafa(x) = −Q(bafa(x))

and the nilpotency of Q.
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Let us list some further amazing facts/observations:

Observation 1. As noted above, G-invariant functions ψ(x) automatically satisfy
Qψ = 0. In fact, more is true: The cohomology of Q in degree zero is isomorphic to
the space of G-invariant functions ψ(x). In other words, for any degree 0 function
Ψ(x, c, b, h) satisfying QΨ = 0 there exists a unique G-invariant ψ(x) such that

Ψ(x, c, b, h) = ψ(x) +QΞ(x, c, b, h)

for some function Ξ of degree −1.

Observation 2. The measure DxDbDcDh is also Q-invariant. In particular, for
any function Ξ(x, b, c, h) we have∫

DxDbDcDh (QΞ)eiS
′

= 0.

Similarly, if Qψ = 0 then in the integral we can replace S′ by any other S′ + QΩ,
with Ω of degree −1, and the integral is not affected, i.e.∫

DxDbDcDhψeiS
′

=

∫
DxDbDcDhψei(S

′+QΩ).

Looking at (3) this means that we are allowed to replace the function bafa in

S′ = S −Q(bafa)

by some other function of degree −1 (for instance baf ′a for some other set of func-
tions f ′a) and the results remain unchanged. This is the BRST incarnation of the
independence of the theory on the choice of gauge fixing.3

2.5. Graded geometry. Let us briefly summarise how the resulting “extended
theory” looks like. First, our space of fields can be described as

M := Rn × g[1]× g[0]× g[−1].

(We can call it the BRST space if we like.) What is this? It is a new version of
“space”, which is locally described by four sets of coordinates, xi (taken to have
degree 0), ca (of degree 1), ha (of degree 0), and ba (of degree −1), where ca, ha, ba

correspond to (linear) coordinates on the vector space g associated to some basis
Ea.4 On this “space” there are “functions” C∞(M) (functionals of fields), which
we obtain by multiplying the coordinates in various ways and using the rule that

yαyβ = (−1)deg yα deg yβyβyα,

where yα denotes collectively all coordinates on M. The degree of a “function” is
the sum of the degrees of its constituents. Lots of usual differential geometry carries
over to this setup, by pretending that M is a real space and the above “functions”
are really functions. One only needs to keep track of the fact that whenever we
exchange two objects (functions, forms, vector fields, operators, etc.), we pick a
sign just as in the above formula (this is called the Koszul sign rule).

For instance, as we saw above, M comes equipped with the degree 1 vector field

Q = caeia(x)∂xi − 1
2f

a
bcc

bcc∂ca − ha∂ba ,

3You may wonder what would happen if, following this philosophy, we would add the exact
term Q(bafa) to S′ = S−Q(bafa), so that we would end up with the good old S. Well, we would

immediately get
∫
DxDbDcDhψeiS = 0 on account of the fermionic integrals. Why isn’t this in

conflict with the above independence of the theory on the choice of the gauge fixing? The answer

is that one should in principle also keep track of the correct prefactor, instead of just writing ∼.
When taking this nasty gauge fixing, the prefactor jumps to infinity, so that the only thing we
can conclude is that taking S′ +Q(bafa) is not a good idea.

4In general, for any vector space V , we denote by V [n] the “space” with coordinates Ea

(associated to a basis Ea of V ) having degree n.
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satisfying Q2 = 0. (Such a graded space equipped with a degree 1 vector field Q
squaring to zero is called a dg manifold.) M also carries a Q-invariant measure

DxDbDcDh.

It will however be more convenient to add also the new part of the exponential to
the measure, i.e. we will instead consider the Q-invariant measure

µ := DxDbDcDh ei(bAc+hf).

2.6. What has happened? Let us now step back and see what this was all about.
We started with an (ordinary) manifold M with an action of G and an invariant
measure µ0 (in our case we had M = Rn and µ0 = Dx).

We then found a dg manifold M, equipped with a map π : M → M and a Q-
invariant measure µ, such that G-invariant functions on M can be identified with
H0(M) and for any G-invariant function Φ on M we have∫

M

Φµ0 =

∫
M

(π∗Φ)µ.

In our case we were then interested in calculating this integral for Φ = ψeiS . The
point was that on the RHS the critical points (hopefully) become nondegenerate
and we can employ the usual perturbative approach.

Remark. The setup discussed here can be used to deal with the simplest form
of gauge symmetry, namely one that is not reducible. For instance, if we have a
theory whose fundamental field is a p-form B on some Riemannian manifold N , with
action

∫
N
dB ∧ ∗dB, then this has a natural gauge symmetry B 7→ B+ dΛ. This is

however further reducible, i.e. Λ and Λ+dΩ lead to the same gauge transformation.
So there are further gauge transformations for gauge transformations, etc. This can
still be dealt with in the BRST framework, if in addition to ghosts we introduce
the so-called ghosts-for-ghosts, etc. The framework is also powerful enough to
deal with situations with field-dependent symmetry algebra.5 There however exist
also theories with a more complicated symmetry structure, for instance when the
symmetry algebra only closes on-shell — these require a further generalisation of
the BRST framework, which we now turn to. (We will see that it also sheds some
new light onto the BRST formalism itself.)

3. BV formalism

3.1. Symplectic geometry. Recall that for any manifold N we can construct the
cotangent bundle T ∗N , which comes equipped with a symplectic form. Choosing a
local coordinate system qi on N , the cotangent bundle is locally described by coor-
dinates qi, pi (i.e. to every qi we assign a “dual” coordinate pi), and the symplectic
form is ω = dpi ∧ dqi.

Note that any vector field V ∈ X(N) can be seen as a linear function V̂ on T ∗N :

X(N) 3 V = V i(q)∂qi 7→ V̂ := V i(q)pi ∈ C∞(T ∗N).

One easily checks that this maps sends [ · , · ] to { · , · }. Similarly, any f ∈ C∞(N)

can trivially be seen as a function (let’s call it f̂) on T ∗N , and we have {V̂ , f̂} = V̂ f .
A submanifold L of a symplectic manifold N is called Lagrangian if dimL =

1
2 dimN and ω|L = 0. In particular (the image of) a section α of T ∗N (which is
the same as a 1-form on N) is Lagrangian if and only if dα = 0. In particular any
function f ∈ C∞(N) gives rise to a Lagrangian submanifold of T ∗N , corresponding
to df .

5In other words, taking a commutator of two gauge transformations results in a linear combi-
nation of gauge transformations, which however have field-dependent coefficients.
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More generally, we can play the same game if we start with a graded manifold
N and then construct T ∗[k]N as the space where to any coordinate qi we assign
a dual coordinate pi such that deg qi + deg pi = k. This again carries a natural
symplectic form ω = dpi ∧ dqi of degree k.6 In what follows, we will consider the
case T ∗[−1]N.

3.2. Going to BV. Let us now look back at the BRST construction. We will
temporarily forget about the path integral itself and only look at the space of fields
together with the classical dynamics and symmetries.

To start, recall that in the BRST story we ended up with a dg manifold (M, Q)
together with a Q-invariant function S.7 We now introduce a new larger space

MBV := T ∗[−1]M.

In order to simplify the notation we will denote the dual coordinates by an asterisk,
so that MBV is described by yα and y∗α. We also define a function

SBV = Ŝ + Q̂

or more explicitly

SBV (y, y∗) = S(y) +Qα(y) y∗α.

From the analysis in the previous subsection it follows that this automatically
satisfies the classical master equation

{SBV , SBV } = 0

as a consequence of QS = 0 and [Q,Q] = 2Q2 = 0.8 The classical master equation
is equivalent to saying that

QBV := {SBV , · }
is in fact a differential, turning MBV into a dg symplectic manifold (i.e. a dg
manifold with a symplectic form which is preserved by the differential).

The philosophy of the BV approach is however slightly different from BRST —
one thing is that although we enlarged the space of fields yet again, we will not
require the path integral to run over the entire MBV . Instead, one is supposed to
perform the integral only over a Lagrangian submanifold of this big space. But
which one?

Let Ψ be a function of degree −1 on M, generating a Lagrangian submanifold
L ⊂ T ∗[−1]M = MBV . Recall that this is given by the condition

y∗α = ∂yαΨ(y).

We then have

SBV |L = S(y) +Qα(y)∂yαΨ(y) = S(y) +QΨ(y).

This is precisely what we obtained in the BRST approach (e.g. with Ψ = −bafa(x))!
The extra terms in the BRST action (cf. (2)) now appear due to performing the
path integral over a Lagrangian submanifold generated by Ψ rather than over the
zero section of T ∗[−1]M (which recovers simply S itself). Finally, we know from
Observation 2 that the results of the physical calculations are independent of the

6Note that here by “degree” we do not mean the differential form degree (symplectic form is
always by definition a differential 2-form) but rather the total degree of all the coordinates which

enter in ω, i.e. degω = deg pi + deg qi = k.
7What we here call S previously corresponded to π∗S. We apologise for the inconvenience.
8In graded geometry the commutator of vector fields U and V is defined as [U, V ] := UV −

(−1)degU deg V V U .
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choice of Ψ — which in the BV framework correspond to invariance under the
deformations of the Lagrangian submanifold in MBV .9

3.3. Why is this helpful? The general (classical) BV framework corresponds to
taking an arbitrary graded symplectic manifold with ω of degree −1, and a degree
0 function SBV satisfying the classical master equation. Such a framework can be
used to capture a much more general class of theories than the ones admitting a
BRST description. The latter embeds into the former via

(M, Q, S)  (T ∗[−1]M, SBV = Ŝ + Q̂).

For instance the Faddeev–Popov procedure produces for us the symplectic space
with

ω = dx∗i ∧ dxi + dc∗a ∧ dca + db∗a ∧ dba + dh∗a ∧ dha,
SBV = S(x) + caeia(x)x∗i − 1

2f
a
bcc

bccc∗a − hab∗a,
as well as a Lagrangian submanifold generated by the function −bafa(x). Note that
this BV space is a product of two BV spaces with

(ω′ = dx∗i ∧ dxi + dc∗a ∧ dca, S′BV = S(x) + caeia(x)x∗i − 1
2f

a
bcc

bccc∗a)

(ω′′ = db∗a ∧ dba + dh∗a ∧ dha, S′′BV = −hab∗a).

Notice that the second space is quite trivial — all the interesting stuff happens in
the first one.

In contrast, a situation with T ∗[−1]M but with SBV having quadratic or higher
terms in the dual variables y∗ describes theories with symmetries that only close
on-shell, and hence in particular do not admit a BRST description.

9In order to fully implement this independence in the path integral one needs the BV action
to satisfy an ~-deformed version of the classical master equation, the so-called quantum master
equation. We won’t go that far in the present text.
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