
A (VERY) SHORT COURSE IN CONFORMAL FIELD THEORY

FRIDRICH VALACH

1. Very brief introduction

This is a set of brief lecture notes for a very short course on conformal field theory delivered at
MAPSS 2025 in Les Diablerets. In their preparation I have used the following sources:

◦ Introduction to Conformal Field Theory by Blumenhagen–Plauschinn
◦ Lectures on String theory by David Tong
◦ Conformal Field Theory by Di Francesco–Mathieu–Sénéchal
◦ String theory, Volume 1: An Introduction to the Bosonic String by Joseph Polchinski
◦ the text Highest weight representations of the Virasoro algebra from the master thesis of
Jonas T. Hartwig (jthartwig.net/notes/virasoro.pdf)

I am also indebted to Samuel Valach for consultations.

2. Conformal group and algebra

Definition. Consider any smooth manifold with a Riemannian metric g. A conformal transfor-
mation is a diffeomorphism under which the metric transforms as g → eΛg for some function Λ(x).
Conformal group is the group of all such transformations. The infinitesimal counterpart is given by
the so-called conformal Killing vector fields — these are vector fields V (x) = vµ(x)∂µ, preserving
the metric up to overall scale, i.e.

(1) ∂µvν + ∂νvµ = λgµν ,

for some function λ(x). They assemble into a conformal Lie algebra.

Proposition. Let M = Rn for n ≥ 3 with Euclidean metric. Then the conformal Lie algebra is
isomorphic to so(n+ 1, 1).

Let us now restrict our attention to the case M = R2, with Euclidean metric g = (dx0)2+(dx1)2.
Making a complex change of coordinates

z = x0 + ix1, z̄ = x0 − ix1,

the metric becomes g = dz dz̄. For simplicity we define

∂ := ∂z, ∂̄ := ∂z̄,

and we rename the components of the vector field to V = vz∂z + vz̄∂z̄ =: v∂ + v̄∂̄. The equations
(1) then reduce to

(2) ∂̄v = 0.

Since V is real, we have that v̄ is in fact the complex conjugate of v, and thus the second equation
∂v̄ = 0 follows automatically. Equation (2) implies that the conformal Killing vector fields can be
identified with holomorphic functions, and so the conformal Lie algebra is infinite-dimensional.

This analysis also holds if one takes an open subset of C ∼= R2 — the conformal Killing vector
fields can be identified with holomorphic functions. A particularly interesting case is the one of
punctured plane M = C∗ ∼= R2\{0}, in which case the basis of Killing vector fields is

ln := −zn+1∂, n ∈ Z.

Exercise. Show that [lm, ln] = (m− n)lm+n. This is known as the Witt algebra. ◦

Even more generally, we can take M to be any 1-dimensional complex manifold. A particularly
interesting example is the Riemann sphere S2 ∼= CP1 ∼= C ∪ {∞}.

Exercise. Show that on out of all ln only l−1, l0, l1 are globally well-defined on the Riemann sphere.
(Hint: study the regularity of the vector field vz∂z at z = ∞, use the coordinate w = 1/z.) ◦
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Exercise. Show that the subalgebra generated by l−1, l0, l1 is isomorphic to sl(2,C). ◦
Theorem 1. The conformal group of the Riemann sphere is SL(2,C)/Z2, with the action

SL(2,C) ∋
(
a b
c d

)
: z 7→ az + b

cz + d
.

Remark. Note that when studying 2-dimensional CFT one typically treats z and z̄ as independent
complex variables, which effectively means that we embed R2 into C2. This allows us to use
various tricks from complex analysis. Still, we must remember that in the end we are sitting at
the subspace R2 ⊂ C2 where z and z̄ are complex conjugates.

3. QFT and CFT

3.1. Basics. Ingredients in (Euclidean) quantum field theory (QFT) with symmetry group G:

◦ spacetime M := Rn with Euclidean metric g = (dx0)2 + · · ·+ (dxn−1)2

◦ complex Hilbert space H, containing the vacuum state |vac⟩ ∈ H

◦ fields = some chosen class of linear operators Oα(x) on H, depending on x ∈ M , satisfying
locality :1

Oα(x)Oβ(y) = Oβ(y)Oα(x) if x ̸= y

and including the identity operator on H

◦ projective2 representation of G on H, i.e. homomorphism G → GL(H)/C∗ preserving (the
1-dimensional subspace spanned by) |vac⟩; the group G should contain at least the group
of isometries of M .

It will be more convenient for us to trade the projective representation for an ordinary linear
representation. This can be done, but in general one needs to pass from the group G to a central
extension Ĝ; this will then be represented on H linearly, i.e. via a homomorphism (for more details
see the Appendix)

Ĝ → GL(H).

Definition. A conformal field theory is a QFT with G containing the conformal group of M .

Basic objects to calculate in a QFT are the correlators

⟨O1(x1) . . .Ok(xk)⟩ := ⟨vac| O1(x1) . . .Ok(xk) |vac⟩ ∈ C,
where ⟨ρ|A |ϕ⟩ := inner product of |ρ⟩ and A |ϕ⟩ (the bra-ket notation). The correlators can often
(especially in CFT’s) be effectively calculated using the operator product expansion (OPE)

Oα(x)Oβ(y) =
∑
γ

fαβγ(x− y)Oγ(y),

where f ’s are (hopefully) manageable ordinary functions, and the fact that the 1-point function
⟨Oα(x)⟩ is nonzero iff Oα is the identity operator.

3.2. Examples of CFT. Let us start by mentioning the important fact that many statistical
models, such as the Ising model, Potts model, O(N)-model, etc., exhibit conformal symmetry near
their critical points, and hence can be described by CFTs. We will return to these briefly later on.

Here we will instead focus on another class of models, related instead to string theory, where
conformal invariance arises in a simple geometric way. To do that, suppose we start with a classical
field theory, which contains the metric as one of the fundamental fields, i.e. the fundamental fields
are {gµν , φi}, and it is governed by an action S(g, φ), which is invariant both under diffeomorphisms
and the Weyl transformations (g, φ) 7→ (eωg, φ), where ω ∈ C∞(M). Starting from such a setup,
we claim that by fixing the metric variable g to some value ĝ we obtain a new classical field theory

Ŝ(φ) := S(ĝ, φ),

which is (classically) conformally invariant. Indeed, if now f is a conformal transformation for the
fixed metric ĝ (i.e. f∗ĝ = eΛĝ) then we get

Ŝ(f∗φ) = S(ĝ, f∗φ)
Weyl
= S(f∗ĝ, f∗φ)

diffeo
= S(ĝ, φ) = Ŝ(φ),

1in the usual Lorentzian case we require fields to commute if their arguments are spacelike separated; when
passing to the Euclidean setup by the Wick rotation, all pairs non-coincident points are spacelike separated

2It is not vectors but rays in H that are physically meaningful, hence the need for a projective representation.
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and hence the theory is conformally invariant. When everything goes well, one obtains a CFT by
quantising this latter theory.

Exercise (Polyakov action). Let M be a n-dimensional manifold, and (N,G) any Riemannian
manifold. Consider the theory where the fields are metric g on M and a smooth map X : M → N ,
with the action

S(g,X) =

∫
M

ωg(X
∗G)µνg

µν =

∫
M

√
det ggµν∂µX

A∂νX
BGAB(X)dnx,

where ωg =
√
det g dnx is the metric volume form on M . This action is automatically invariant

under Diff(M). Verify that it is Weyl invariant iff n = 2. If M = R2, g is the constant Euclidean
metric, and N = RD then the resulting conformally invariant theory is the collection of D free
bosons

Ŝ(X) =

∫
R2

(∂µX
i)(∂µXi)d

2x = 1
2

∫
C
∂Xi∂̄Xidzdz̄.

Write the action of ln on Xi. ◦

Exercise (Yang–Mills action). Let M = Rn and g a Lie algebra with invariant pairing. We take
our fields to be the metric g and a 1-form A with values in g, with the action

S(g,A) = 1
2

∫
M

⟨Fµν , F
µν⟩

√
det g dnx =

∫
M

⟨F ∧ ∗F ⟩.

As before, this is automatically diffeomorphism invariant. Check that it is Weyl invariant iff n = 4.
Notably, however, this is one of the cases where “all does not go well” and the theory upon

quantisation ceases to be conformally invariant. One way to remedy this is to pass to a particular
supersymmetric extension, i.e. the famous N = 4 super Yang–Mills theory in 4 dimensions, which
is conformal even after quantisation. ◦

4. Virasoro algebra and its representations

Theorem 2. The Witt algebra admits a unique 1-dimensional central extension, called the Virasoro
algebra Vir. This is spanned by elements Ln, n ∈ Z, and an element ĉ, where [ĉ,Vir] = 0 and

[Lm, Ln] = (m− n)Lm+n + ĉ
12 (m

3 −m)δm+n,0.

Remark. By the 2nd Whitehead lemma so(n+1, 1) does not admit any nontrivial central extension.

The relevant representations of Vir are the ones arising from the following construction:

Definition. Denote by Vir+ the subalgebra of Vir generated by elements Ln, n ≥ 0 and ĉ. Let
Rh,c be the 1-dimensional representation of Vir+ on which Ln, n > 0 acts trivially, L0 acts by
multiplication by h ∈ R and ĉ by multiplication by c ∈ R. We define the Verma module

V (h, c) := U(Vir)⊗U(Vir+) Rh,c.

Equivalently, define V (h, c) as the infinite-dimensional representation of Vir, whose basis is given
by (the formal expressions)

(3) L−n1
. . . L−nk

|0⟩ , 0 < n1 ≤ · · · ≤ nk,

for k = 0, 1, 2, . . . (in particular we have the basis element |0⟩), the action of Vir on |0⟩ is given
by the conditions

L0 |0⟩ = h |0⟩ , ĉ |0⟩ = c |0⟩ , Ln |0⟩ = 0 if n > 0,

and the action of any Ln on any basis element (3) is determined by using these conditions together
with the commutation relations of Vir

[Lm, Ln] = (m− n)Lm+n + ĉ
12 (m

3 −m)δm+n,0.

until one obtains a linear combination of expressions of the form (3).

For instance

L2(L−1L−2 |0⟩) = (L2L−1)L−2 |0⟩ = (L−1L2 + [L2, L−1])L−2 |0⟩ = L−1L2L−2 |0⟩+ 3L1L−2 |0⟩
= L−1(L−2L2 + 4L0 +

c
2 ) |0⟩+ 3(L−2L1 + 3L−1) |0⟩

= L−1(4h+ c
2 ) |0⟩+ 9L−1 |0⟩ = (9 + 4h+ c

2 )L−1 |0⟩ .
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Definition. The number c is called the central charge. The vector |0⟩ ∈ V (h, c) is called the
primary state. The other vectors (3) and their linear combinations are called descendants. The
eigenvalues of L0 are called conformal dimensions. Conformal dimension of a vector minus h is
called the level.

Exercise. Show that the action of Ln shifts the level by −n. In particular the level of the basis
vector (3) is n1 + · · ·+ nk. ◦

Thus the Verma module decomposes as a vector space into

V (h, c) =

∞⊕
l=0

Vl(h, c),

where Vl(h, c) consists of vectors of level l. The picture to have in mind is that of the “pyramid”

|0⟩

L−1 |0⟩

L−2 |0⟩ L2
−1 |0⟩

L−3 |0⟩ L−1L−2 |0⟩ L3
−1 |0⟩

L−4 |0⟩ L−1L−3 |0⟩ L2
−2 |0⟩ L2

−1L−2 |0⟩ L4
−1 |0⟩

...

level 0

level 1

level 2

level 3

level 4

Exercise. Show
∞∏

n=1

1

1− qn
=

∞∑
m=0

(dimVm(h, c))qm. ◦

Definition. We define a (unique) Hermitian form on the Verma module V (h, c) by the following
conditions:

◦ the pairing of |0⟩ with itself (recall that this is denoted ⟨0|0⟩) is defined to be 1
◦ L†

n = L−n.

For instance, the inner product of L−2 |0⟩ with itself is

⟨0|L2L−2 |0⟩ = ⟨0| (L−2L2 + 4L0 +
c
2 ) |0⟩ = 4h+ c

2 .

Note that ⟨0|Ln = 0 for n < 0.

Exercise. Calculate the inner product of L−1L−2 |0⟩ with itself, i.e. ⟨0|L2L1L−1L−2 |0⟩. ◦

Exercise. Show that if k ̸= l then Vk(h, c) ⊥ Vl(h, c), i.e. different levels are mutually orthogonal. ◦

Definition. A vector |v⟩ is called singular if Ln |v⟩ = 0 for all n > 0 and level |v⟩ > 0.3

Proposition. Any singular vector v generates a proper subrepresentation Vir |v⟩ ⊂ V (h, c), which
is orthogonal to the entire V (h, c).

Proof. First, note that the basis of the subrepresentation is given by

(4) L−n1
. . . L−nk

|v⟩ , 0 < n1 ≤ · · · ≤ nk.

Since the level of these elements is larger than 0, the subrepresentation does not contain |0⟩ and
hence is proper. To see that Vir |v⟩ ⊥ Vir, we calculate the inner product of elements of (3) and
(4), which reduces to expressions of the form

⟨v|Lnk
. . . Ln1L−m1 . . . L−mk

|0⟩ , ni,mj > 0.

3In particular we suppose that v is an eigenvector of L0.



A (VERY) SHORT COURSE IN CONFORMAL FIELD THEORY 5

Commuting the Lni
’s to the right we either obtain . . . Lni

|0⟩ = 0 or an expression of the above
type with a smaller amount of L’s. We perform this iteratively until there are no more L>0 left, in
which case we either have ⟨v|L<0 · · · = 0 or ⟨v|0⟩, which vanishes since |v⟩ and |0⟩ have different
levels. □

Corollary. The quotient V (h, c)/Vir |v⟩ inherits a well-defined Hermitian form.

Proposition. By quotienting out V (h, c) by all subrepresentations generated by singular vectors
one obtains an irreducible representation, which we will denote I(h, c).

We will really be interested in the representations I(h, c). Note that for generic values of h and
c there are no singular vectors in the Verma module and hence V (h, c) = I(h, c).

Definition. A representation I(h, c) is called unitary if its Hermitian form is positive definite.

It follows from the preceding discussion that if V (h, c) contains a state of negative norm (often
called a ghost) then I(h, c) is not unitary.

Exercise. By calculating the norm of L−n |0⟩ show that I(h, c) can only be unitary if h ≥ 0 and
c ≥ 0. ◦

Theorem 3 (Friedan–Qiu–Shenker–Goddard–Kent–Olive). The irreducible highest weight repre-
sentation I(h, c) is unitary iff either

◦ c ≥ 1 and h ≥ 0, or

◦ c = 1 − 6
m(m+1) < 1 for some m ∈ {2, 3, 4, . . . } and h = ((m+1)r−ms)2−1

4m(m+1) for some r ∈
{1, 2, . . . ,m− 1} and s ∈ {1, 2, . . . , r}.

5. Structure of 2-dimensional CFT

From now on we will exclusively study the 2-dimensional Euclidean setup, in complexified
coordinates on C∗. In order to be able to continue, let us mention (without discussing their origin
in too much detail) some simplifying features of 2-dimensional CFTs.

Feature. There exists a 1-1 map between fields and states of the Hilbert space, with the correspon-
dence on C∗ given by O 7→ O(0) |0⟩. The fields corresponding to primary states and descendants
are called primary fields (or just primaries) and descendants. We will denote general fields by
Oα(z) and the primaries by Latin indices, e.g. Oi(z), with the associated conformal dimension hi.

We will effectively take this to be the definition of our class Oα of fields (cf. QFT ingredients).

Feature. In CFT in 2D it is usual for the holomorphic and antiholomorphic parts to “separate”,
i.e. the Hilbert space decomposes as (a sum of the blocks of the form)

Hhol ⊗Hantihol,

and each of the factors is acted upon by a separate copy of Vir (so that overall we have Vir×Vir).
Furthermore, in a physically relevant theory the holomorphic (and similarly the antiholomorphic)
part is given by

Hhol =
⊕
h∈S

I(h, c)

for some fixed c ∈ R and some set S ⊂ R.

We will assume this and from now focus only on the holomorphic (often also called chiral) part.
Although this is not neccessary for the physics,4 we will also require that I’s are unitary.

Recall that the goal of the theory is to calculate the correlators and this can be achieved by
knowing the OPE

Oα(z)Oβ(w) =
∑
γ

fαβγ(z − w)Oγ(w).

It can be shown that the condition of conformal invariance puts a heavy restriction on the possible
form of the f ’s. For instance, it suffices to know the coefficients fijk for the primaries — the

4Many statistical models, such as the Yang–Lee edge singularity or some models of polymers admit a description

in terms of non-unitary CFTs.
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general fαβγ can then be determined in a concrete algorithmic way independent of the particular
CFT in question. Furthermore, one can show that

fijk(z) = cijkz
hk−hi−hj ,

for some structure constants cijk. The theory is thus fully described by the following data:

◦ the central charge c
◦ the conformal weights hi of primary operators
◦ the structure coefficients cijk.

This data however cannot be completely arbitrary and is further severely constrained (again by
conformal invariance), so that often it suffices to specify only the central charge and the conformal
weights and the rest can be uniquely determined. The program of determining consistent CFT’s
by studying these constraints is called conformal bootstrap.

Definition. A CFT with S finite is called a minimal model.

Proposition. Unitary minimal models are classified by m ∈ {2, 3, . . . }. The central charge is then
c = 1− 6

m(m+1) and S is given by the collections of all allowed values of h from Theorem 3.

One enormous success in the field of CFT has been the identification of various statistical models
(at their critical points) with minimal models, and their subsequent solution. For instance:

◦ for m = 2 we have c = 0 and S = {0}: this corresponds to the “empty theory” with only
identity operator

◦ for m = 3 we have c = 1/2 and S = {0, 1/16, 1/2}: this is the critical Ising model in 2d,
the fields with weights 1/16 and 1/2 correspond to spin and energy density, respectively

◦ for m = 4 we have c = 7/10 and S = {0, 3/80, 1/10, 7/16, 3/5, 3/2}: the tricritical Ising
model

◦ for m = 5 we have c = 4/5 and S = . . . : three-state Potts model
◦ . . .

Often the model has a larger symmetry, which extends Virasoro — a notable example is the Wess–
Zumino–Witten model, where the symmetry involves an affine Lie algebra. CFTs whose Hilbert
space contains finitely many representations of this enlarged symmetry algebra are called rational.

6. Operator product expansion and the energy-momentum tensor

It turns out that in every CFT there is an important operator, linked to the conformal trans-
formations, called the energy-momentum tensor (also known as the stress-energy tensor or stress-
energy-momentum tensor). Focusing again on the holomorphic (chiral) part, this is given by a
holomorphic operator T (z),5 which is related to the Virasoro generators by the Laurent expansion

T (z) =

∞∑
n=−∞

z−n−2Ln.

The connection between this operator and conformal transformations then translates into the
following OPE statements.

Before starting, let us note that the operators we will be interested in have the OPE of the form

(5) O1(z)O2(w) =

N∑
n=−∞

Oαn
(w)

(z − w)n
.

Since we will mostly study the singular part, we will use the notation where ∼ denotes equality up
to regular terms, i.e.

O1(z)O2(w) ∼
N∑

n=1

Oαn(w)

(z − w)n
.

Now one can show that an operator O is primary (of weight h) iff its OPE with T has the form

(6) T (z)O(w) ∼ h
O(w)

(z − w)2
+

∂O(w)

z − w
.

5See the Appendix for more details on the definition, geometry, and properties of the energy-momentum tensor.



A (VERY) SHORT COURSE IN CONFORMAL FIELD THEORY 7

Furthermore, one can show that the OPE of T (in a theory with central charge c) with itself is

(7) T (z)T (w) ∼ c/2

(z − w)4
+

2T (w)

(z − w)2
+

∂T (w)

z − w
.

Operator T is thus not primary, unless c = 0.

Definition. Suppose we have an OPE (5) of two fields. We define the contraction as the singular
part, i.e.

O1(z)O2(w) :=

N∑
n=1

Oαn
(w)

(z − w)n
.

We also define the normal ordering of O1 and O2 as the field denoted (O1O2)(z) given by

(O1O2)(w) := Oα0(w) = lim
z→w

[O1(z)O2(w)−O1(z)O2(w)].

We can also conveniently write

(O1O2)(w) =
1

2πi

∮
w

dz

z − w
O1(z)O2(w),

where
∮
w

is the integral along a (small) circle around w.

Proposition (Wick theorem).

O1(z)(O2O3)(w) =
1

2πi

∮
w

dx

x− w

(
O1(z)O2(x)O3(w) +O2(x)O1(z)O3(w)

)
.

Proposition. ∂(O1O2) = (∂O1O2) + (O1∂O2).

Proof. Making a change of variables z → z + ϵ in the second step we get

∂(O1O2) = lim
ϵ→0

1

2πiϵ

(∮
w+ϵ

O1(z)O2(w + ϵ)dz

z − w − ϵ
−

∮
w

O1(z)O2(w)dz

z − w

)
= lim

ϵ→0

1

2πiϵ

∮
w

O1(z + ϵ)O2(w + ϵ)−O1(z)O2(w)

z − w
dz

=
1

2πi

∮
w

∂O1(z)O2(w) +O1(z)∂O2(w)

z − w
dz = (∂O1O2) + (O1∂O2). □

Exercise. Find the definition of a vertex operator algebra and persuade yourself that this is a
structure describing the chiral part of a CFT. ◦

7. Example: free boson

Let us now develop in more detail the example of the free boson. The most important (holo-
morphic) primary field in the game is ∂X, which has the following OPE with itself6

(8) ∂X(z)∂X(w) ∼ − 1

(z − w)2

The energy-momentum tensor is

T (z) = γ(∂X∂X)(z),

where γ is some constant (to be determined).7 Let us now check that for a suitable γ we get both
that ∂X is a primary field of some conformal weight h and that T is a correct energy-momentum
tensor; we will also calculate the central charge.

6This can be determined for instance from the propagator for the field X. Note that despite the fact that the

corresponding classical field theory is formulated using the field X, this field is not the most convenient object to

work with in the quantum version of the story. Instead, we use ∂X. Also note that the classical equations of motion
say ∂̄(∂X) = 0 — and the same equation can also be used under the correlators, as long as there is no collision with

other operator insertions (cf. the last remark of the first part of the Appendix).
7Again, this comes from looking at the classical energy-momentum tensor, whose holomorphic part is simply

T = ∂X∂X. This has to be regularised (and normalised) in the quantum version of the story, hence the normal

ordering (which excludes the singular bits of the product of two operators at a point).
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First, let us calculate

∂X(z)T (w) ∼ γ∂X(z)(∂X∂X)(w) = − γ

2πi

∮
w

dx

x− w

(
1

(z − x)2
∂X(w) +

1

(z − w)2
∂X(x)

)
= −2γ

∂X(w)

(z − w)2
,

where we used the fact that for a holomorphic function f(z) we have

1

2πi

∮
w

dz

z − w
f(z) = f(w).

However, we actually want to have the result and arguments in the form (6). Hence we continue:

T (z)∂X(w) ∼ −2γ
∂X(z)

(z − w)2
∼ −2γ

∂X(w)

(z − w)2
− 2γ

∂(∂X(w))

z − w
,

where we Taylor-expanded ∂X(z) around the point w. Comparing the last term with the one in
(6) we see that in order for ∂X to be primary we need to set γ = − 1

2 , and so

T (z) = − 1
2 (∂X∂X)(z), T (z)∂X(w) ∼ ∂X(w)

(z − w)2
+

∂2X(w)

z − w
.

In particular we see that ∂X is primary of weight 1.
In order to calculate the OPE of T with itself we first take a derivative of (8) w.r.t. z to get

∂2X(z)∂X(w) ∼ 2

(z − w)3

and a similar result for derivative w.r.t. w. Using the OPE of T with ∂X we then obtain

T (z)T (w) ∼ − 1
2T (z)(∂X∂X)(w)

= − 1

4πi

∮
w

dx

x− w

[(
∂X(x)

(z − x)2
+

∂2X(x)

z − x

)
∂X(w) +

(
∂X(w)

(z − w)2
+

∂2X(w)

z − w

)
∂X(x)

]
.

Looking at the first term, we note that substituting

∂X(x)∂X(w) = − 1

(x− w)2
+ (∂X∂X)(w) + terms proportional to (x− w)

the last bit, i.e. the terms proportional to (x − w), does not actually contribute to the integral.
Performing such an expansion for every term and using T = − 1

2 (∂X∂X) and ∂T = −(∂2X∂X)
we finally get

T (z)T (w) ∼ 1/2

(z − w)4
+

2T (w)

(z − w)2
+

∂T (w)

z − w

showing that the free boson is a conformal field theory with central charge c = 1.

Exercise. Finish the last step in the above calculation. ◦

8. Other examples

The examples here are based on Polchinski’s book String theory and the Conformal Field Theory
book by Di Francesco–Mathieu–Sénéchal.

8.1. Linear dilaton CFT. We start as in free boson with the field ∂X with

∂X(z)∂X(w) ∼ − 1

(z − w)2

but now with the energy-momentum tensor

T = − 1
2 (∂X∂X) + v∂2X

for some v ∈ R. Show that ∂X is no longer primary, but T still satisfies (7) with the central charge

c = 1 + 12v2.
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8.2. bc system. Since this is going to be a theory describing fermions, we will need to make a
small adjustment to what was said before — the fields b(z) and c(w) for z ̸= w will now no longer
commute but rather anticommute with each other,

b(z)c(w) = −c(w)b(z), b(z)b(w) = −b(w)b(z), c(z)c(w) = −c(w)c(z).

The rest of the discussion is unchanged.8 The relevant OPEs are now

b(z)c(w) ∼ 1

z − w
, b(z)b(w) ∼ 0, c(z)c(w) ∼ 0

and the energy-momentum tensor is

T = (∂b c)− λ∂(bc),

for some λ ∈ R. Derive the “opposite” OPE c(z)b(w) ∼ 1
z−w and show that for every λ this theory

defines a CFT with the central charge

c = −3(2λ− 1)2 + 1,

and with the conformal weights of the fields b, c being λ and 1− λ, respectively. In the case λ = 2
(hence c = −26) this theory appears in the gauge-fixing of the diffeomorphism symmetry of the
Polyakov action in string theory.

8.3. βγ system. There is a bosonic (commuting) analogue of the bc system, called the βγ system,
where we have

β(z)γ(w) ∼ − 1

z − w
, β(z)β(w) ∼ 0, γ(z)γ(w) ∼ 0,

and the energy-momentum tensor is

T = (∂β γ)− λ∂(βγ).

Calculate the OPE γ(z)β(w) ∼ 1
z−w and show that this theory defines a CFT with the central

charge opposite to the bc system, i.e.

c = 3(2λ− 1)2 − 1,

and that the weights of β and γ are λ and 1−λ, respectively. For λ = 3
2 (hence c = 11) this theory

appears in the gauge-fixing of the superstring.

8.4. Wess–Zumino–Witten model. Fix a compact simple Lie group G with Lie algebra g and
fix an integer k (this is called the level). Choose an arbitrary basis ea of g and denote the structure
constants by cab

c = [ea, eb]
c.

Let now K be the normalised Killing form9 on g, i.e.

Kab =
1

2h∨ cac
dcbd

c,

where h∨ is the dual Coxeter number.10 (Notably for su(n) the normalised Killing form coincides
precisely with the matrix trace, K(x, y) = tr(xy).) The Killing form is a non-degenerate (in fact
negative-definite) metric on g, and from now on we will use it (and its inverse, denoted as usual
by Kab) to lower and raise any indices if needed.

Exercise. Show that cabc is totally antisymmetric. ◦

The basic ingredient of the (chiral part of the) WZW model is the field J(z), valued in g.

Equivalently, using the basis we have a set of fields {Ja(z)}dim g
a=1 . We impose the following OPE:

Ja(z)Jb(w) ∼ kKab

(z − w)2
+

cabcJ
c(w)

z − w
.

We define the energy-momentum tensor by

T = γ(JaJa),

8There is also a relative minus sign on the RHS of the Wick theorem, due to the swapping of O1 and O2 in the

second term.
9It is normalised by the condition that the long roots of g have length squared equal to 2. This won’t be important

for what follows.
10This is defined as h∨ = 1+

∑
n∨
i , where n∨

i are the expansions coefficients of the maximal coroot in the basis

of simple coroots. Again, you will not need to know nor understand these notions for the present purposes.
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where γ is a constant to be determined. This is called the Sugawara construction.11

Exercise. Fix γ by demanding

T (z)Ja(w) ∼ h
Ja(w)

(z − w)2
+

∂Ja(w)

z − w

for some h. (Answer: γ = 1
2(k+h∨) and h = 1.) ◦

Exercise. Using this value of γ calculate the OPE of T with itself and determine the central charge.
(Answer: c = k dim g

k+h∨ .) ◦

Appendix: Energy-momentum tensor

Suppose now that we have an arbitrary classical field theory on a manifold M containing the
metric, described by S(g, φ).

Definition. We define the energy-momentum tensor (also known as the stress-energy tensor or
stress-energy-momentum tensor) using the variational derivative as follows:

Tµν :=
1√
det g

δS

δgµν
.

In other words, upon an infinitesimal change of metric gµν → gµν + δgµν the action changes as

S → S + δS, δS =

∫
M

Tµνδgµν
√
det g dnx =

∫
M

Tµνδgµνωg.

Note that the tensor T depends both on g and φ and is symmetric.

Remark. The energy-momentum tensor is to be thought as representing the density and flux
of energy and momentum for the theory in question. For instance, when in general relativity one
considers a system governed by the sum of the Einstein–Hilbert action and a matter action S(g, φ),
the corresponding equations of motion reproduce precisely the Einstein equations

Rµν − 1
2Rgµν + Λgµν = Tµν ,

together with the equations of motion for the matter fields φ, given by δS(g, φ)/δφi = 0.

Exercise. Show that the stress-energy tensor for the Polyakov action is

Tµν = ∂µX
i∂νXi − 1

2gµν∂ρX
i∂ρXi. ◦

Proposition. Suppose S is diffeomorphism invariant. Then the energy-momentum tensor satisfies
∇µT

µν = 0 on-shell, i.e. at the critical locus of the action Ŝ. Here ∇ is the Levi-Civita connection
for ĝ.

Proof. Take any vector field v on M and use it to deform φ → φ+ ϵLvφ. Then

δŜ = Ŝ(φ+ ϵLvφ)− Ŝ(φ) = S(ĝ, φ+ ϵLvφ)− S(ĝ, φ) = S(ĝ − ϵLv ĝ, φ)− S(ĝ, φ)

= −ϵ

∫
M

Tµν(Lv ĝ)µνωĝ = −2ϵ

∫
M

Tµν(∇µvν)ωĝ = 2ϵ

∫
M

(∇µT
µν)vνωĝ,

where we used (Lv ĝ)µν = ∇µvν +∇νvµ. Since on-shell we have δŜ = 0 for any v, it follows that
at this locus ∇µT

µν = 0. □

Proposition. If S is Weyl invariant then the energy-momentum tensor is traceless: Tµ
µ = 0.

Proof. Under an infinitesimal Weyl transformation g → g + ϵλg (for λ any function) we have

0 = S(g + ϵλg, φ)− S(g, φ) = ϵ

∫
M

Tµνλgµνωg = ϵ

∫
M

Tµ
µλωg. □

Exercise. Check that the energy-momentum tensor for the Polyakov action is traceless iff n = 2. ◦

11Recall that the Laurent coefficients of T are the generators of the Virasoro algebra. Similarly, the Laurent
coefficients of J are the generators of the so-called affine Lie algebra (associated to g). The Sugawara construction

then describes a concrete embedding of the Virasoro algebra into the universal envelopping algebra of this affine Lie

algebra.
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Corollary. Let S(g, φ) be diffeomorphism and Weyl-invariant, and Ŝ(φ) = S(ĝ, φ) the correspond-
ing conformally invariant theory. Then the conserved current associated to a conformal Killing
vector field ζ is Tµνζν , i.e. on-shell (for Ŝ) we have ∇µ(T

µνζν) = 0.

Proof. On-shell we have ∇µ(T
µνζν) = Tµν∇µζν = 1

2λT
µνgµν = 0. □

Remark. One can also formally derive the form of this current directly using the Noether method :
we consider a new vector field fζ, where f is a function on M and study the change of Ŝ under
this transformation. As before, using the diffeomorphism invariance to trade off the deformation
of φ for a deformation of g, we get

δŜ = S(ĝ − Lfζ ĝ, φ)− S(ĝ, φ) = −2

∫
M

Tµν∇µ(fζν)ωg = −2

∫
M

Tµν(f∇µζν + ζν∇µf)ωg

= −
∫
M

Tµν(fλgµν + 2ζν∇µf)ωg = 2

∫
M

∇µ(T
µνζν)fωg.

Since on-shell we have δŜ for any f , it follows that ∇µ(T
µνζν) = 0.

Exercise. For any 2-dimensional CFT Ŝ (on a 1-dimensional complex manifold) arising from S(g, φ)
show that the only nonzero components of the energy-momentum tensor are

T := Tzz, T̄ := Tz̄z̄

and that on-shell (for Ŝ) they satisfy

∂̄T = 0, ∂T̄ = 0. ◦

Claim. One can easily show using a path-integral argument that the differential equations which
classically hold on-shell still hold “under the correlators as long as the other field insertions happen
at other points”, for instance

⟨φ(x1)∂φ(x2)∂̄T (x)⟩ = 0

as long as x ̸= x1 and x ̸= x2. That’s why (e.g. in OPEs) we often pretend that the operator T
itself is holomorphic (while in fact this is true only under the correlators).

Appendix: Projective to linear

Suppose we start with a projective representation of a Lie group G, i.e. a (say complex) vector
space V and a homomorphism

(9) ρ : G → GL(V )/C∗.

We can ask: is it possible that there exists a linear representation, i.e. a homomorphism

ρ′ : G → GL(V )

which gives rise to the former projective representation after composing with

π : GL(V ) → GL(V )/C∗,

i.e. ρ = π ◦ ρ′? The general answer is “No”. However, one can always make things work by
enlarging the group slightly. In more detail:

Starting with a projective representation (9) we define a new group

Ĝ ⊂ G×GL(V ), Ĝ = {(g,A) | ρ(g) = π(A)}.

It is not difficult to see that this is a (1-dimensional) central extension of G, i.e. there is an exact
sequence of groups

(10) 1 → C∗ → Ĝ → G → 1,

s.t. the image of C∗ is contained in the centre of Ĝ. The first map in (10) is C∗ ∋ z 7→ (1, z id) ∈ Ĝ

and the second one is Ĝ ∋ (g,A) 7→ g ∈ G. The new group Ĝ furthermore admits a linear
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representation on V , simply by Ĝ ∋ (g,A) 7→ A ∈ GL(V ) and this is compatible with the projective
representation of G in the sense that the following commutes

Ĝ G

GL(V ) GL(V )/C∗

ρ

π

Sometimes an even smaller central extension suffices. Notably, one has:

Theorem 4 (Bargmann). Suppose G is a Lie group whose Lie algebra has vanishing 2nd coho-
mology. Then every projective unitary representation of G can be made linear by passing to the
universal cover of G.

Note that taking a universal cover of a Lie group can also be regarded as a (0-dimensional)
central extension (10) where C∗ is replaced by a discrete abelian group. Importantly, the 2nd
cohomology vanishes for any semisimple Lie algebra (this is the 2nd Whitehead lemma).

This is for instance how SU(2) representations arise in quantum mechanics of half-integer spins,
since one is interested in projective representations of the rotation group SO(3) = SU(2)/Z2.
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