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Abstract: In these lectures we look at some basics of generalised geometry. We start with a brief

recollection of some standard notions from differential geometry, and some examples of geometric

structures. We then arrive at (examples of) Lie and Courant algebroids by looking at symmetries

of diffeomorphism-invariant theories — Einstein–Yang–Mills and the universal sector of stringy

supergravity, respectively. After that we dive shortly into some elementary theory of Courant

algebroids and Dirac structures and show how they give a unified viewpoint of Poisson, symplectic,

and complex geometry. We finish with application to string theory, namely to its low-energy

dynamics and dualities.
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1 Preliminaries

(Be warned that this is a work still under construction, and there are potentially mistakes/errors.

Feel free to let me know if you find any of them. The plan is to turn this into a more readable set

of lecture notes.)

Differential forms

◦ notation: Ωp(M)

◦ wedge product (exterior product): α ∧ β = (−1)αββ ∧ α

(Ωp,∧) is a graded commutative algebra

◦ an R-linear operator D on Ωp(M) is called a derivation of degree n if

DΩp ⊂ Ωp+n, D(α ∧ β) = (Dα) ∧ β + (−1)n degαα ∧Dβ

degD := n  Koszul sign rule, Dern := the space of derivations of degree n

D ∈ Dern, D
′ ∈ Dern′ =⇒ JD,D′K := DD′ − (−1)nn

′
D′D ∈ Dern+n′

(Der• is a graded Lie algebra)

◦ Lie derivative LX ∈ Der0 (for X ∈ Γ(TM)), i.e. LX(α ∧ β) = (LXα) ∧ β + α ∧ LXβ

◦ exterior derivative d ∈ Der1, i.e. d(α ∧ β) = (dα) ∧ β + (−1)degαα ∧ dβ

◦ interior product iX ∈ Der−1, i.e. iX(α ∧ β) = (iXα) ∧ β + (−1)degαα ∧ iXβ

JLX ,LY K ≡ LXLY − LY LX = L[X,Y ]X

JLX , iY K ≡ LX iY − iY LX = i[X,Y ]X

Jd, iXK ≡ diX + iXd = LX

Jd, dK ≡ 2d2 = 0

JiX , iY K ≡ iX iY + iY iX = 0

JLX , dK ≡ LXd− dLX = 0

– 1 –



Symplectic and Poisson geometry

◦ symplectic structure on M is ω ∈ Ω2(M) such that dω = 0 and ω is nondegenerate

nondegeneracy means ω[ : TM → T ∗M is an isomorphism (ωij is an invertible matrix)

◦ inverting ω[ (or ωij) we obtain an antisymmetric tensor π ∈ T2
0(M) (bivector)

define the Poisson bracket of functions on M by {f, g} := π(df, dg)

dω = 0 =⇒ Jacobi for { · , · }

◦ Poisson structure on M is a bivector field π whose induced Poisson bracket satisfies Jacobi

◦ symplectic =⇒ Poisson, but not the other way round (e.g. π = 0 is a Poisson structure)

◦ for H ∈ C∞(M) we have a vector field XH := π(dH, · )

XHf = 〈π(dH, · ), df〉 = π(dH, df) = {H, f}

◦ M serves as a phase space, XH gives the time evolution of the system

◦ time evolution of observables f ∈ C∞(M) is given by ḟ = XHf = {H, f}

◦ example: M = R2n, ω = dpi ∧ dqi  {f, g} = ∂f
∂pi

∂g
∂qi −

∂f
∂qi

∂g
∂pi

, q̇i = ∂H
∂pi

, ṗi = −∂H∂qi

◦ example: M = S2, ω = volume form

Complex structure

◦ complex manifold = charts valued in Cn, holomorphic transition functions

◦ coordinates zµ give rise to real coordinates zµ = xµ + iyµ

◦ define tensor J ∈ T1
1(M) by J ∂

∂xµ = ∂
∂yµ , J ∂

∂yµ = − ∂
∂xµ  J2 = −1

◦ almost complex structure is a tensor J ∈ T1
1(M) such that J2 = −1

◦ a.c.s. is called integrable (or simply complex structure) if it corresponds to a complex manifold

◦ Nijenhuis tensor NJ ∈ T1
2(M), NJ(X,Y ) := [X,Y ] + J([JX, Y ] + [X, JY ])− [JX, JY ]

◦ (Newlander–Nirenberg theorem) Almost complex structure is integrable iff NJ = 0.

◦ Exercise: given an a.c.s., take L ⊂ TM ⊗C to be the −1-eigenbundle of J ; show that NJ = 0

iff [Γ(L),Γ(L)]X⊗C ⊂ Γ(L)

2 Algebroids

Symmetries of the Einstein–Yang–Mills theory

S(g,A) =

∫
M

R volg +F ∧ ∗F g metric, A ∈ Ω1(M)

◦ abelian case: symmetries generated by X ∈ Γ(TM), λ ∈ Ω0(M)

δ(X,λ)g = LXg, δ(X,λ)A = LXA+ dλ

– 2 –



◦ calculating the algebra of symmetries δ(X,λ)δ(X′,λ′) − δ(X′,λ′)δ(X,λ), looking at A:

A
(X′,λ′)−−−−−→ A+ ε(LX′A+ dλ′)

(X,λ)−−−→ (A+ ε(LX′A+ dλ′)) + ε(LX(A+ ε(LX′A+ dλ′)) + dλ)

= A+ ε(LXA+ LX′A+ dλ+ dλ′) + ε2(LXLX′A+ LXdλ
′)

(δ(X,λ)δ(X′,λ′) − δ(X′,λ′)δ(X,λ))A = LXLX′A− LX′LXA+ dLXλ
′ − dLX′λ

= L[X,X′]XA+ d(LXλ
′ − LX′λ) = δ([X,X′]X,LXλ′−LX′λ)A

◦ non-abelian case: [(X,λ), (X ′, λ′)] = ([X,X ′]X,LXλ
′ − LX′λ− [λ, λ′]g)

◦ properties: antisymmetric, Jacobi  Lie bracket

◦ Jacobi ⇔ [u, [u′, u′′]] + [u′, [u′′, u]] + [u′′, [u, u′]] = 0 ⇔ [u, [u′, u′′]] = [[u, u′], u′′] + [u′, [u, u′′]]

◦ define vector bundle E as a direct sum of TM and the trivial bundle M × g =: ad

E := TM ⊕ ad, Γ(E) 3 (X,λ)

sections of E correspond to (X,λ); hence Γ(E) is a Lie algebra

[X + λ,X ′ + λ′]E = [X,X ′]X + LXλ
′ − LX′λ− [λ, λ′]g

◦ if f ∈ C∞(M) then

[X+λ, f(X ′+λ′)] = LX(fX ′)+LX(fλ′)−fLX′λ−f [λ, λ′]g = f [X+λ,X ′+λ′]+(Xf)(X ′+λ′)

if define the vector bundle map (anchor) ρ : E → TM , ρ(X + λ) = X, then

[u, fu′]E = f [u, u′]E + (ρ(u)f)u′ ∀u, u′ ∈ Γ(E)

◦ a Lie algebroid is a vector bundle E →M , with a Lie bracket [ · , · ]E on Γ(E) and a vector

bundle map ρ : E → TM satisfying the last equation

◦ example: E = TM ⊕ ad

– if g = 0 then TM , [ · , · ]X, ρ = id

– if M = pt then E = g, [ · , · ]g, ρ = 0 (Lie algebroid over a point is a Lie algebra)

String theory low energy effective action (universal sector)

S(g,B, ϕ) =

∫
M

e−2ϕ(R volg +4 dϕ ∧ ∗dϕ− 1
2 dB ∧ ∗dB) g metric, B ∈ Ω2(M), ϕ ∈ C∞(M)

◦ analogue of the previous abelian theory, with connection replaced by a “higher connection”

◦ symmetries generated by X ∈ Γ(TM), α ∈ Ω1(M)

δ(X,α)g = LXg, δ(X,α)B = LXB + dα, δ(X,α)ϕ = LXϕ

◦ as before, (δ(X,α)δ(X′,α′) − δ(X′,α′)δ(X,α))B = L[X,X′]XB + d(LXα
′ − LX′α)

◦ define vector bundle E := TM ⊕ T ∗M , sections of E correspond to (X,α) ≡ X + α

◦ produces bracket [X + α,X ′ + α′]E = [X,X ′]X + LXα
′ − LX′α
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◦ antisymmetric, but not Jacobi! solution: we can just as well write

(δ(X,α)δ(X′,α′) − δ(X′,α′)δ(X,α))B = L[X,X′]XB + d(LXα
′ − LX′α+ d(. . . )),

with . . . an expression linear in X,α,X ′, α′

◦ choosing · · · = diX′α, we get the bracket [X + α,X ′ + α′]E = [X,X ′]X + LXα
′ − iX′dα

◦ not antisymmetric, but satisfies Jacobi [u, [u′, u′′]E ]E = [[u, u′]E , u
′′]E + [u′, [u, u′′]E ]E

◦ again, defining ρ : E → TM , ρ(X + α) = X, we get [u, fu′]E = f [u, u′]E + (ρ(u)f)u′

◦ TM ⊕ T ∗M carries more structure, can define natural inner product

〈X + α,X ′ + α′〉 := α(X ′) + α′(X)

◦ this is “preserved” by the bracket, since (setting u = X + α, u′ = X ′ + α′, u′′ = X ′′ + α′′)

〈[u,u′]E , u′′〉+ 〈u′, [u, u′′]E〉 = 〈[X,X ′]X + LXα
′ − iX′dα,X ′′ + α′′〉+ ′↔′′

= iX′′LXα
′ − iX′′iX′dα+ i[X,X′]Xα

′′ + iX′LXα
′′ − iX′iX′′dα+ i[X,X′′]Xα

′

= (i[X,X′]Xα
′′ + iX′LXα

′′) + (iX′′LXα
′ + i[X,X′′]Xα

′)− (iX′iX′′ + iX′′iX′)dα

= LX iX′α
′′ + LX iX′′α

′ = X(iX′α
′′ + iX′′α

′) = ρ(u)〈u′, u′′〉

◦ the symmetric part of the bracket is [u, u′]E + [u′, u]E = d(iX′α+ iXα
′) = d〈u, u′〉

◦ a Courant algebroid is a vector bundle E → M , with an (R-bilinear) bracket [ · , · ]E
on Γ(E), a vector bundle map ρ : E → TM , and a fibrewise inner product 〈 · , · 〉 (not

necessarily positive-definite) such that

[u, fu′]E = f [u, u′]E + (ρ(u)f)u′, [u, [u′, u′′]E ]E = [[u, u′]E , u
′′]E + [u′, [u, u′′]E ]E ,

ρ(u)〈u′, u′′〉 = 〈[u, u′]E , u′′〉+ 〈u′, [u, u′′]E〉, [u, u′]E + [u′, u]E = ρ∗d〈u, u′〉

◦ note that in the last formula we have used ρ∗ : T ∗M → E∗ ∼= E (the last equality using the

inner product), which in the above example coincides with the usual T ∗M → TM ⊕ T ∗M

3 Linear algebra intermezzo

◦ let V be a vector space with an inner product 〈 · , · 〉 of signature (n, n)

◦ for a linear subspace W ⊂ V define W⊥ := {x ∈ V | 〈x,W 〉 = 0} (note that (W⊥)⊥ = W )

◦ a linear subspace W ⊂ V is called isotropic if W ⊂W⊥, i.e. 〈W,W 〉 = 0 ( =⇒ dimW ≤ n)

◦ a linear subspace W ⊂ V is called Lagrangian if W = W⊥ ( =⇒ dimW = n)

◦ a linear subspace W ⊂ V is called coisotropic if W ⊃W⊥ ( =⇒ dimW ≥ n)

◦ if W,W ′ are Lagrangian and W ∩W ′ = 0, then the map W ′ → W ∗, x 7→ 〈x, · 〉|W is an

isomorphism

◦ Lagrangian = both isotropic & coisotropic
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4 Courant algebroids

◦ examples:

– TM ⊕ T ∗M as above (generalised tangent bundle)

– if M = pt then E = Lie algebra with invariant inner product

◦ using the first two axioms (and suppresing the subscript E) we get

0 = [u, [u′, fu′′]]− [[u, u′], fu′′]− [u′, [u, fu′′]]

= [u, f [u′, u′′] + (ρ(u′)f)u′′]− (u↔ u′)− f [[u, u′], u′′]− (ρ([u, u′])f)u′′

= f [u, [u′, u′′]] + (ρ(u)f)[u′, u′′] + (ρ(u′)f)[u, u′′] + (ρ(u)ρ(u′)f)u′′ − (u↔ u′)

− f [[u, u′], u′′]− (ρ([u, u′])f)u′′ = f([u, [u′, u′′]]− [[u, u′], u′′]− [u′, [u, u′′]])

+ (ρ(u)ρ(u′)− ρ(u′)ρ(u)− ρ([u, u′])f)u′′ = ([ρ(u), ρ(u′)]X − ρ([u, u′])f)u′′

and so the anchor, seen as a map Γ(E)→ Γ(TM), is a homomorphism of algebras, i.e.

[ρ(u), ρ(u′)]X = ρ([u, u′]E)

◦ applying this to the last axiom, and using the antisymmetry of [ · , · ]X, we get

ρρ∗d〈u, u′〉 = 0

since any function can be (locally) written as 〈u, u′〉, for some u, u′, we have ρρ∗df = 0 for

any function; writing any 1-form α in coordinates

ρρ∗α = ρρ∗(αi(x)dxi) = αi(x)ρρ∗dxi = 0,

since ρ and ρ∗ are vector bundle maps, and so we can conclude that

ρ ◦ ρ∗ = 0

◦ this condition is equivalent to the fact that ker ρ is coisotropic (at every point on M)

◦ it is also equivalent to the following: consider the following sequence of (vector bundle) maps

0→ T ∗M
ρ∗−→ E

ρ−→ TM → 0

with the first and last map trivial; then composing any two subsequent maps/arrows gives

zero, i.e. this is a chain complex

Exact Courant algebroids

◦ we say that a Courant algebroid is exact if this sequence of maps is exact, i.e. each time we

encounter

. . .
κ−→ . . .

λ−→ . . .

we require that imκ = kerλ

◦ this translates to the conditions 0 = ker ρ∗, im ρ∗ = ker ρ, and im ρ = TM , respectively;

equivalently, ρ∗ is injective, im ρ∗ = ker ρ, and ρ is surjective

however, the first condition follows from the last one and hence can be dropped

– 5 –



similarly, since for any Courant algebroid we have im ρ∗ ⊂ ker ρ, the equality im ρ∗ = ker ρ is

equivalent to the fact that the dimensions match:1 rk(im ρ∗) = rk(ker ρ)

assuming surjectivity of ρ (and hence injectivity of ρ∗), we have

rk(im ρ∗) = rk(T ∗M) = dimM, rk(ker ρ) = rk(E)− rk(TM) = rk(E)− dimM

and so a Courant algebroid is exact iff ρ is surjective and rk(E) = 2 dimM

in particular, for any exact Courant algebroid the subbundle ker ρ is Lagrangian

◦ example: the generalised tangent bundle is an exact Courant algebroid

◦ fact: for any exact Courant algebroid one can choose a global Lagrangian splitting of the

exact sequence, i.e. there exists a vector bundle map τ : TM → E such that ρ◦τ = id and the

image of τ is Lagrangian (to prove this one uses the partition of unity, and some extra stuff)

◦ choosing such a map τ , we get a vector bundle map

Φ: TM ⊕ T ∗M → E, X + α 7→ τ(X) + ρ∗α

this is injective: if we have u = X + α such that 0 = Φ(u) = τ(X) + ρ∗α, then applying ρ we

in particular get 0 = ρ(τ(X)) = X; we thus have 0 = Φ(u) = ρ∗α, which by injectivity of ρ∗

implies α = 0

since the ranks of the bundles coincide, we get that Φ is in fact an isomorphism

let us therefore use Φ to identify E with TM ⊕T ∗M and let us check what induced structure

〈 · , · 〉Φ, ρΦ, and [ · , · ]Φ we get on TM ⊕ T ∗M ; first,

〈X + α,X ′ + α′〉Φ := 〈Φ(X + α),Φ(X ′ + α′)〉E = 〈τ(X) + ρ∗α, τ(X ′) + ρ∗α′〉

since im τ and im ρ∗ = ker ρ are both Lagrangian, this simplifies to

〈X+α,X ′+α′〉Φ = 〈ρ∗α, τ(X ′)〉+ 〈ρ∗α′, τ(X)〉 = 〈α, ρτ(X ′)〉+ 〈α′, ρτ(X)〉 = α(X ′) +α′(X)

by construction, we have ρΦ(X + α) = ρ(Φ(X + α)) = X; for the bracket, first note that

[ρΦ(u), ρΦ(u′)]X = ρΦ([u, u′]Φ) implies [X,X ′]X = ρΦ([X + α,X ′ + α′]Φ), i.e.

[X + α,X ′ + α′]Φ = [X,X ′]X + (some 1-form expression)

in particular

[X,X ′]Φ = [X,X ′]Φ + Ξ(X,X ′), Ξ: Γ(TM)× Γ(TM)→ Γ(T ∗M)

using the fourth axiom for u = X, u = X ′ we see that Ξ(X,X ′) = −Ξ(X ′, X); the third

axiom gives

0 = Ξ(X,X ′)(X ′′) + Ξ(X,X ′′)(X ′)

which implies that Ξ(X,X ′)(X ′′) is completely antisymmetric in all three arguments; more-

over, since it is C∞(M)-linear in the third argument, it has to be C∞(M)-linear in all three,

and so we get that Ξ(X,X ′)(X ′′) = H(X,X ′, X ′′) for some 3-form H; we can also obtain

other useful formulas using the third axiom for various u, u′, u′′:

u = X, u′ = X ′, u′′ = α  LX(α(X ′)) = α(LXX
′) + 〈X ′, [X,α]Φ〉Φ =⇒ [X,α]Φ = LXα,

1the dimension of the fibres is called the rank of the vector bundle (denoted here by rk)
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u = α, u′ = α′, u′′ = X  0 = 〈[α, α′]Φ, X〉Φ =⇒ [α, α′]Φ = 0

the last axiom implies

[α,X]Φ = −[X,α]Φ + d〈α,X〉Φ = −LXα+ diXα = −iXdα

putting things together we have

[X + α,X ′ + α′]Φ = [X,X ′]X + LXα
′ − iX′dα+H(X,X ′, · )

note that in terms of τ we have H(X,X ′, X ′′) = 〈[τ(X), τ(X ′)], τ(X ′′)〉
using Jacobi for three vectors, we have

0 = [X, [X ′, X ′′]Φ]Φ − [[X,X ′]Φ, X
′′]Φ − [X ′, [X,X ′′]Φ]Φ

= [X, [X ′, X ′′]X + iX′′iX′H]Φ − (X ↔ X ′)− [[X,X ′]X + iX′iXH,X
′′]Φ

= [X, [X ′, X ′′]X]X + i[X′,X′′]XiXH + LX iX′′iX′H

− [X ′, [X,X ′′]X]X − i[X,X′′]XiX′H − LX′iX′′iXH

− [[X,X ′]X, X
′′]X − iX′′i[X,X′]XH + iX′′diX′iXH

= (i[X′,X′′]XiX + LX iX′′iX′ − i[X,X′′]XiX′ − LX′iX′′iX − iX′′i[X,X′]X + iX′′diX′iX)H

= (iX′′LX′iX + iX′′LX iX′ − (iX′′LX iX′ − iX′′iX′LX) + iX′′diX′iX)H

= iX′′(LX′iX + iX′LX + diX′iX)H = iX′′(iX′diX + iX′LX)H = iX′′iX′iXdH

and so H is closed; it is straightforward to check that, assuming dH = 0, all the Courant

algebroid axioms are satisfied (there is also a more sneaky argument, see below); to summarise,

our starting exact Courant algebroid can be recast in the following form:

TM ⊕ T ∗M, ρΦ(X + α) = 0, 〈X + α,X ′ + α′〉Φ = α(X ′) + α′(X),

[X + α,X ′ + α′]Φ = [X,X ′]X + LXα
′ − iX′dα+H(X,X ′, · ) (H ∈ Ω3(M), dH = 0)

◦ recall now that all this depended on a choice of τ , which led to a specific Φ; what happens

when we take a different Lagrangian splitting τ ′? note that the only thing that can change is

the 3-form H entering the bracket

in order to proceed, let us look at the algebroid E = TM ⊕ T ∗M , ρΦ, 〈 · , · 〉Φ, [ · , · ]Φ
and omit the subscript Φ; note that in this form we have a natural Lagrangian splitting

TM → TM ⊕ T ∗M of the exact sequence; suppose we take instead a general Lagrangian

splitting τ ′; then

τ ′(X) = X + λ(X) ∈ TM ⊕ T ∗M,

where λ : TM → T ∗M is a bundle map; isotropy implies that

0 = 〈X + λ(X), X ′ + λ(X ′)〉 = λ(X)(X ′) + λ(X ′)(X)

and so we have λ(X)(X ′) = B(X,X ′) for some B ∈ Ω2(M) (conversely, any B gives a

Lagrangian splitting); the 3-form H corresponding to this splitting is then calculated to be

H ′(X,X ′, X ′′) = 〈[τ ′(X), τ ′(X ′)], τ ′(X ′′)〉 = 〈[X + iXB,X
′ + iX′B], X ′′ + iX′′B〉

= i[X,X′]XiX′′B + iX′′(LX iX′B − iX′diXB + iX′iXH)

= iX′′(iX′LXB − iX′diXB + iX′iXH) = iX′′iX′iX(H + dB)

changing the splitting thus leads to a shift of H by dB; we have thus proved the following

remarkable result
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◦ Theorem (Ševera): Exact Courant algebroids over a given M are classified by H3(M). Choos-

ing a specific Lagrangian splitting τ of the exact sequence, we obtain a concrete three-form

representative given by H(X,X ′, X ′′) = 〈[τ(X), τ(X ′)], τ(X ′′)〉, and we can write the Courant

algebroid structure as

TM ⊕ T ∗M, ρ(X + α) = 0, 〈X + α,X ′ + α′〉 = α(X ′) + α′(X),

[X + α,X ′ + α′]E = [X,X ′]X + LXα
′ − iX′dα+H(X,X ′, · )

(we will call the special case with H = 0 the standard Courant algebroid)

Dirac structures

◦ a subbundle L ⊂ E of a Courant algebroid is called a Dirac structure if it is Lagrangian (at

every point) and involutive, i.e.

[Γ(E),Γ(E)]E ⊂ Γ(E)

◦ if L is a Dirac structure in the standard Courant algebroid satisfying L ∩ T ∗M = 0 then

L = graphω := {X + ω(X, · ) | X ∈ TM},

for some tensor ω ∈ T0
2(M); as we saw above, the Lagrangianity conditions says that ω is

antisymmetric; the involutivity means that for every X and X ′ there exists X ′′ such that

[X + iXω,X
′ + iX′ω]E = X ′′ + iX′′ω

this fixes X ′′ = [X,X ′]X, and the condition then becomes

LX iX′ω − iX′diXω = i[X,X′]Xω

putting everything to one side, we get

0 = (LX iX′ − iX′diX − i[X,X′]X)ω = (iX′LX − iX′diX)ω = iX′iXdω

and so we see that Dirac structures in a standard Courant algebroid, which are transverse to

T ∗M , correspond to closed 2-forms; this provides a link with symplectic geometry (though

note that we do not get here that ω is nondegenerate)

◦ similarly, if L is a Dirac structure in the standard Courant algebroid satisfying L ∩ TM = 0

then it is given by a graph of a bivector field π; the involutivity is equivalent to π being a

Poisson structure

Generalised complex structures

◦ starting from a Courant algebroid E → M , we can complexify the fibers to get a smooth

complex vector bundle EC → M ; the bracket and the inner product naturally extend to C-

bilinear structures on this bundle; in particular we can again define a Dirac structure on EC,

which we then call a complex Dirac structure; note also that we can use complex conjugation

on EC

◦ a generalised complex structure is a complex Dirac structure L ⊂ EC such that L ∩ L̄ = 0

◦ a symplectic structure defines a generalised complex structure L := graph(iω)

◦ a complex structure defines a generalised complex structure L := T (1,0)M ⊕ T ∗(0,1)M
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Generalised metrics

◦ we will specialise here to the Riemannian (i.e. positive-definite) setup; it is however not difficult

to adjust the definitions to accommodate the Lorentzian (or orther) cases as well

◦ a generalised metric on a Courant algebroid is a subbundle V+ ⊂ E which is maximally

positive definite, i.e. the following two conditions hold

– the inner product restricted to V+ is positive definite

– the inner product restricted to the orthogonal complement of V+, denoted V−, is negative

definite

◦ let V+ be a generalised metric on an exact Courant algebroid; fix a Lagrangian splitting

τ : TM → E; this gives an identification E ∼= TM ⊕ T ∗M and a particular 3-form H; note

that V+ ∩ T ∗M = 0 since every vector in T ∗M has zero norm, while every non-zero vector in

V+ has non-zero norm; thus we can write

V+ = graph(e) = {X + e(X, · ) | X ∈ TM}

for some e ∈ T0
2(M); decompose now e into a symmetric and antisymmetric part

e = g + b

since 〈X + e(X, · ), X ′ + e(X ′, · )〉 = e(X,X ′) + e(X ′, X) = 2g(X,X ′), the metric on V+

coincides (up to a multiple) with g, the latter is a Riemannian metric on M ; note that we

have produced three tensors: g, b,H

now choosing a different Lagrangian splitting τ ′ leads to a different triplet; from the previous

discussion we know that H gets replaced by H+dB, for some B ∈ Ω2(M); to see how e = g+b

changes, we need to decompose elements in V+ ⊂ TM ⊕ T ∗M into T ∗M and

im(τ ′) = graph(B) = {X +B(X, · ) | X ∈ TM}

this is readily done, as

V+ = {X + e(X, · ) | X ∈ TM} = {(X +B(X, · )) + (e(X, · )−B(X, · )) | X ∈ TM}

and so we see that e gets replaced by e−B, i.e.

g  g, b b−B

so it is only the metric g and the combination Ĥ := H + db that is independent of the choice

of splitting; we thus have a one-to-one correspondence

generalised metric on an exact Courant algebroid ↔ Riemannian metric & closed 3-form

an equivalent way to look at things is to note that there exists a unique isotropic splitting

such that V+ becomes the graph of a symmetric tensor (i.e. it has b = 0)
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